Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Infectious Disease Modelling ; 2023.
Article in English | EuropePMC | ID: covidwho-20241191

ABSTRACT

Monitoring of viral signal in wastewater is considered a useful tool for monitoring the burden of COVID-19, especially during times of limited availability in testing. Studies have shown that COVID-19 hospitalizations are highly correlated with wastewater viral signals and the increases in wastewater viral signals can provide an early warning for increasing hospital admissions. The association is likely nonlinear and time-varying. This project employs a distributed lag nonlinear model (DLNM) (Gasparrini et al., 2010) to study the nonlinear exposure-response delayed association of the COVID-19 hospitalizations and SARS-CoV-2 wastewater viral signals using relevant data from Ottawa, Canada. We consider up to a 15-day time lag from the average of SARS-CoV N1 and N2 gene concentrations to COVID-19 hospitalizations. The expected reduction in hospitalization is adjusted for vaccination efforts. A correlation analysis of the data verifies that COVID-19 hospitalizations are highly correlated with wastewater viral signals with a time-varying relationship. Our DLNM based analysis yields a reasonable estimate of COVID-19 hospitalizations and enhances our understanding of the association of COVID-19 hospitalizations with wastewater viral signals.

2.
Sci Total Environ ; 881: 163292, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2295246

ABSTRACT

Wastewater-based surveillance has become an effective tool around the globe for indirect monitoring of COVID-19 in communities. Variants of Concern (VOCs) have been detected in wastewater by use of reverse transcription polymerase chain reaction (RT-PCR) or whole genome sequencing (WGS). Rapid, reliable RT-PCR assays continue to be needed to determine the relative frequencies of VOCs and sub-lineages in wastewater-based surveillance programs. The presence of multiple mutations in a single region of the N-gene allowed for the design of a single amplicon, multiple probe assay, that can distinguish among several VOCs in wastewater RNA extracts. This approach which multiplexes probes designed to target mutations associated with specific VOC's along with an intra-amplicon universal probe (non-mutated region) was validated in singleplex and multiplex. The prevalence of each mutation (i.e. VOC) is estimated by comparing the abundance of the targeted mutation with a non-mutated and highly conserved region within the same amplicon. This is advantageous for the accurate and rapid estimation of variant frequencies in wastewater. The N200 assay was applied to monitor frequencies of VOCs in wastewater extracts from several communities in Ontario, Canada in near real time from November 28, 2021 to January 4, 2022. This includes the period of the rapid replacement of the Delta variant with the introduction of the Omicron variant in these Ontario communities in early December 2021. The frequency estimates using this assay were highly reflective of clinical WGS estimates for the same communities. This style of qPCR assay, which simultaneously measures signal from a non-mutated comparator probe and multiple mutation-specific probes contained within a single qPCR amplicon, can be applied to future assay development for rapid and accurate estimations of variant frequencies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Ontario
3.
Frontiers in microbiology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2280173

ABSTRACT

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard” data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

4.
Front Microbiol ; 14: 1048661, 2023.
Article in English | MEDLINE | ID: covidwho-2280174

ABSTRACT

The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard" data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.

5.
Curr Opin Environ Sci Health ; 33: 100458, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2264702

ABSTRACT

Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.

6.
Sci Rep ; 12(1): 15777, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2036892

ABSTRACT

Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Disease Outbreaks , Humans , Influenza, Human/epidemiology , Pandemics , Sewage , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
Sci Total Environ ; 853: 158547, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2008102

ABSTRACT

Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
8.
Sci Total Environ ; 853: 158458, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2008101

ABSTRACT

Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the Alpha variant of concern (VOC), viral measurement of SARS-CoV-2 in wastewater was a leading indicator for both COVID-19 incidence and disease burden in communities. As the two-dose vaccination rates escalated during the spread of the Delta VOC in Jul. 2021 through Dec. 2021, relations weakened between wastewater signal and community COVID-19 disease incidence and maintained a strong relationship with clinical metrics indicative of disease burden (new hospital admissions, ICU admissions, and deaths). Further, with the onset of the vaccine-resistant Omicron BA.1 VOC in Dec. 2021 through Mar. 2022, wastewater again became a strong indicator of both disease incidence and burden during a period of limited natural immunization (no recent infection), vaccine escape, and waned vaccine effectiveness. Lastly, with the populations regaining enhanced natural and vaccination immunization shortly prior to the onset of the Omicron BA.2 VOC in mid-Mar 2022, wastewater is shown to be a strong indicator for both disease incidence and burden. Hospitalization-to-wastewater ratio is further shown to be a good indicator of VOC virulence when widespread clinical testing is limited. In the future, WWS is expected to show moderate indication of incidence and strong indication of disease burden in the community during future potential seasonal vaccination campaigns.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Pandemics , SARS-CoV-2 , Wastewater , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring
9.
Microbiol Resour Announc ; 11(7): e0036222, 2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1874508

ABSTRACT

We report metagenomic sequencing analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in composite wastewater influent from 10 regions in Ontario, Canada, during the transition between Delta and Omicron variants of concern. The Delta and Omicron BA.1/BA.1.1 and BA.2-defining mutations occurring in various frequencies were reported in the consensus and subconsensus sequences of the composite samples.

10.
Epidemics ; 39: 100560, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778119

ABSTRACT

The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinical cases observed through traditional surveillance and the signals from viral concentrations in wastewater is still developing and hampers interpretation of the data and actionable public-health decisions. We present a modelling framework that includes both SARS-CoV-2 transmission at the population level and the fate of SARS-CoV-2 RNA particles in the sewage system after faecal shedding by infected persons in the population. Using our mechanistic representation of the combined clinical/wastewater system, we perform exploratory simulations to quantify the effect of surveillance effectiveness, public-health interventions and vaccination on the discordance between clinical and wastewater signals. We also apply our model to surveillance data from three Canadian cities to provide wastewater-informed estimates for the actual prevalence, the effective reproduction number and incidence forecasts. We find that wastewater-based surveillance, paired with this model, can complement clinical surveillance by supporting the estimation of key epidemiological metrics and hence better triangulate the state of an epidemic using this alternative data source.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Canada/epidemiology , Cities/epidemiology , Humans , Pandemics , RNA, Viral , Wastewater
11.
Curr Opin Environ Sci Health ; 27: 100348, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1719554

ABSTRACT

Amid the 2019 coronavirus disease pandemic (COVID-19), the scientific community has a responsibility to provide accessible public health resources within their communities. Wastewater based epidemiology (WBE) has been used to monitor community spread of the pandemic. The goal of this review was to evaluate the need for an environmental justice approach for COVID-19 WBE starting with the state of California in the United States. Methods included a review of the peer-reviewed literature, government-provided data, and news stories. As of June 2021, there were twelve universities, nine public dashboards, and 48 of 384 wastewater treatment plants monitoring wastewater for SARS-CoV-2 within California. The majority of wastewater monitoring in California has been conducted in the urban areas of Coastal and Southern California (34/48), with a lack of monitoring in more rural areas of Central (10/48) and Northern California (4/48). Similar to the access to COVID-19 clinical testing and vaccinations, there is a disparity in access to wastewater testing which can often provide an early warning system to outbreaks. This research demonstrates the need for an environmental justice approach and equity considerations when determining locations for environmental monitoring.

12.
Water Res ; 205: 117681, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1433889

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives to date. Antigenic drift has resulted in viral variants with putatively greater transmissibility, virulence, or both. Early and near real-time detection of these variants of concern (VOC) and the ability to accurately follow their incidence and prevalence in communities is wanting. Wastewater-based epidemiology (WBE), which uses nucleic acid amplification tests to detect viral fragments, is a reliable proxy of COVID-19 incidence and prevalence, and thus offers the potential to monitor VOC viral load in a given population. Here, we describe and validate a primer extension PCR strategy targeting a signature mutation in the N gene of SARS-CoV-2. This allows quantification of B.1.1.7 versus non-B.1.1.7 allele frequency in wastewater without the need to employ quantitative RT-PCR standard curves. We show that the wastewater B.1.1.7 profile correlates with its clinical counterpart and benefits from a near real-time and facile data collection and reporting pipeline. This assay can be quickly implemented within a current SARS-CoV-2 WBE framework with minimal cost; allowing early and contemporaneous estimates of B.1.1.7 community transmission prior to, or in lieu of, clinical screening and identification. Our study demonstrates that this strategy can provide public health units with an additional and much needed tool to rapidly triangulate VOC incidence/prevalence with high sensitivity and lineage specificity.


Subject(s)
COVID-19 , SARS-CoV-2 , Alleles , Humans , Polymerase Chain Reaction , Viral Load , Wastewater
13.
FEMS Microbes ; 2, 2021.
Article in English | PMC | ID: covidwho-1387875

ABSTRACT

People infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shed the virus and its genetic material via their sputum, nasopharyngeal secretions, saliva, urine and feces (Cevik et al.2021). Hence, public health and water quality scientists throughout the world have been monitoring untreated and/or primary treated wastewater and sludge for the surveillance of SARS-CoV-2 in communities (https://arcg.is/1aummW). Numerous reviews have discussed the possibility of SARS-CoV-2 transmission to humans from exposure to wastewater or waters receiving untreated or inadequately treated wastewater based on limited empirical evidence (Adelodun et al. 2020;Bilal et al. 2020;Olusola-Makinde and Reuben 2020;Elsamadony et al. 2021;Khorram-Manesh, Goniewicz and Burkle 2021;Shutler et al. 2021). Multiple transmission routes have been suggested, including waterborne transmission, airborne transmission, contact with contaminated surfaces (fomites) and subsequent touching of mucous membranes such as the mouth, nose, or eyes. Herein, we briefly summarize the empirical evidence pertaining to the transmission of SARS-CoV-2 associated with wastewater exposure.

14.
Sci Total Environ ; 801: 149618, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1356432

ABSTRACT

Wastewater-based epidemiology/wastewater surveillance has been a topic of significant interest over the last year due to its application in SARS-CoV-2 surveillance to track prevalence of COVID-19 in communities. Although SARS-CoV-2 surveillance has been applied in more than 50 countries to date, the application of this surveillance has been largely focused on relatively affluent urban and peri-urban communities. As such, there is a knowledge gap regarding the implementation of reliable wastewater surveillance in small and rural communities for the purpose of tracking rates of incidence of COVID-19 and other pathogens or biomarkers. This study examines the relationships existing between SARS-CoV-2 viral signal from wastewater samples harvested from an upstream pumping station and from an access port at a downstream wastewater treatment lagoon with the community's COVID-19 rate of incidence (measured as percent test positivity) in a small, rural community in Canada. Real-time quantitative polymerase chain reaction (RT-qPCR) targeting the N1 and N2 genes of SARS-CoV-2 demonstrate that all 24-h composite samples harvested from the pumping station over a period of 5.5 weeks had strong viral signal, while all samples 24-h composite samples harvested from the lagoon over the same period were below the limit of quantification. RNA concentrations and integrity of samples harvested from the lagoon were both lower and more variable than from samples from the upstream pumping station collected on the same date, indicating a higher overall stability of SARS-CoV-2 RNA upstream of the lagoon. Additionally, measurements of PMMoV signal in wastewater allowed normalizing SARS-CoV-2 viral signal for fecal matter content, permitting the detection of actual changes in community prevalence with a high level of granularity. As a result, in sewered small and rural communities or low-income regions operating wastewater lagoons, samples for wastewater surveillance should be harvested from pumping stations or the sewershed as opposed to lagoons.


Subject(s)
COVID-19 , Humans , RNA, Viral , Rural Population , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
15.
J Environ Sci (China) ; 107: 218-229, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1116983

ABSTRACT

Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.


Subject(s)
COVID-19 , RNA, Viral , Humans , Laboratories , Pandemics , SARS-CoV-2 , Wastewater
16.
Sci Total Environ ; 770: 145319, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1049883

ABSTRACT

Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and non-discriminating surveillance tool. However, their efficacy in prospectively capturing resurgences following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawa's water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 h prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 h. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.


Subject(s)
COVID-19 , Cities , Hospitalization , Humans , RNA, Viral , Retrospective Studies , SARS-CoV-2 , Wastewater
17.
Water Res ; 188: 116560, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-899651

ABSTRACT

In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections through measuring trends of RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 gene regions are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canada's national capital region, i.e., the City of Ottawa, ON (pop. ≈ 1.1M) and the City of Gatineau, QC (pop. ≈ 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 gene regions in PCS (92.7, 90.6%, n = 6) as compared to PGS samples (79.2, 82.3%, n = 5). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMoV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human 18S rRNA, making PMMoV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMoV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMoV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.


Subject(s)
Betacoronavirus , COVID-19 , Coronavirus Infections , Pneumonia, Viral , Coronavirus Infections/epidemiology , Humans , Incidence , Pandemics , Pneumonia, Viral/epidemiology , Prevalence , RNA, Ribosomal, 16S , Residence Characteristics , SARS-CoV-2 , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL